
1SWRA635–October 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Optimizing CC2530 Z-Stack 3.0.2 Flash and RAM

White Paper
SWRA635–October 2018

Optimizing CC2530 Z-Stack 3.0.2 Flash and RAM

This document is intended to help developers optimize the Flash and RAM usage of Z-Stack 3.0.2 when
developing their own application using the CC2530 platform. It will also describe some limitations of using
the CC2530 device as a Zigbee Coordinator device configuration due to RAM dependencies. The
SampleSwitch Router project from Z-Stack 3.0.2 will be used throughout as an example.

1 Initial Out-of-Box Code Size
Z-Stack 3.0.2 can be downloaded from the Texas Instruments™ Z-STACK tool page and afterwards will
be located by default in C:\Texas Instruments. The first step is to load a CC2530 project workspace inside
IAR EW 8051 v10.20. This is accomplished through selecting File > Open Workspace and finding the
correct workspace file, in this case SampleSwitch.eww is located here:

C:\Texas Instruments\Z-Stack 3.0.2\Projects\zstack\HomeAutomation\SampleSwitch\CC2530DB

Then select Project -> Configuration and choose the Router option, followed by Project > Make (or F7) to
build the SampleSwitch Router project from Z-Stack 3.0.2 without any modifications. After building the
code, refer to the bottom of the .map file (located in the Output folder) to see the memory footprint starting
point:
239 555 bytes of CODE memory

32 bytes of DATA memory (+ 68 absolute)
7 425 bytes of XDATA memory

192 bytes of IDATA memory
8 bits of BIT memory

1 867 bytes of CONST memory

The important numbers on this list are CODE and XDATA memory, which correspond to Flash and RAM,
respectively.

2 Flash Optimizations

2.1 Removing the Example User Interface
The User Interface (UI) that is provided with the Z-Stack 3.0.2 sample applications provide a means to
easily get a network up and running, view the network status on an LCD, and modify network
commissioning parameters at runtime. However it also takes up a lot of code space and is unnecessary
for developers to keep in their own custom applications.

Three things must be done to remove this interface:
• Exclude the UI files from compilation
• Remove the API calls to the UI functions in the sample app file(s)
• Modify the project compile flags to exclude LCD-related drivers

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA635
http://www.ti.com/tool/Z-STACK
http://www.ti.com/product/CC2530

Flash Optimizations www.ti.com

2 SWRA635–October 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Optimizing CC2530 Z-Stack 3.0.2 Flash and RAM

2.1.1 Exclude UI Files
First we must remove App/zcl_sampleapps_ui.c from compilation. You can do that by right clicking on
the file and going to Options..., then excluding it from the build by clicking the check box at the top left of
the prompt.

Figure 1. Exclude zcl_sampleapps_ui.c From Build

2.1.2 Remove API Calls to UI Functions
In zcl_samplesw.c, there are various calls to UI APIs that we must remove. Search this file for "UI_"
and either comment out or remove this code entirely. An example of this is:
void zclSampleSw_Init(byte task_id)
{
...

// UI_Init(zclSampleSw_TaskID, SAMPLEAPP_LCD_AUTO_UPDATE_EVT, SAMPLEAPP_KEY_AUTO_REPEAT_EVT,

// &zclSampleSw_IdentifyTime, APP_TITLE, &zclSampleSw_UiUpdateLcd, zclSampleSw_UiStatesMain);

// UI_UpdateLcd();

}

All "UI_" functions must be removed or else build errors will occur since they are located in the excluded
zcl_sampleapps_ui.c file.

2.1.3 Modify the Compile Flags to Exclude LCD-Related Drivers
The compile flags for the project are accessed by going to Project Options and then navigating to
C/C++ Compiler > Preprocessor > Defined symbols. From here, the following LCD-related changes can be
made:

• Remove LCD_SUPPORTED=DEBUG
• Add HAL_LCD=FALSE

Figure 2. Accessing Preprocessor Defined Symbols

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA635

www.ti.com Flash Optimizations

3SWRA635–October 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Optimizing CC2530 Z-Stack 3.0.2 Flash and RAM

2.2 Removing/Modifying Driver Files
There are some drivers that are included by default in the Z-Stack sample applications that you may not
be needed for a custom application. For example, to remove the ADC driver go to Project Options and
navigate to C/C++ Compiler > Preprocessor > Defined symbols and then add the HAL_ADC=FALSE
compile flag.

2.3 Changing the Number of Virtual Registers Available
This is a minor CC2530 device-specific optimization that can be done to save a few hundred bytes of
Flash. Go to Project Options and navigate to General Options > Target > Number of virtual registers. By
default this value is set to 16 but a more optimal value found for Z-Stack projects was 24. Attempts can be
made to modify this value to various different sizes and observe which builds the smallest code size.

Figure 3. Changing Number of Virtual Registers

2.4 Supported ZCL Cluster Considerations
Make sure ZCL clusters that are not necessary for either device type or Zigbee certification do not exist in
the application. For instance, in the SampleSwitch Router project, the ZCL_GROUPS cluster is included
by default in the project compile flags. By the Zigbee Lighting & Occupancy Device Specification, this
cluster is an optional cluster and can thus be removed from C/C++ Compiler > Preprocessor > Defined
symbols of the Project Options. Use the Zigbee Cluster Library v6 Specification, the Zigbee Lighting &
Occupancy Device Specification, and the Zigbee Home Automation Profile specification (all available from
the Zigbee alliance website) to determine which clusters the chosen Zigbee device must support.

2.5 BDB_Reporting Considerations
Attribute report sending functionality in the Zigbee 3.0 specification is a mandatory feature for certain
device types that support specific clusters. For instance, a Zigbee On/Off Light device must support the
Client Side of the On/Off Cluster. This must support the "OnOff" attribute, and by the ZCL v6 specification
this attribute must be reportable. If an application is going to support any cluster attributes that have a
reportable access type (by the ZCL v6 specification), the compile flag BDB_REPORTING must be
included in the application.

In Z-Stack, there are 4 separate macros that are related to ZCL reporting functionality:
1. BDB_REPORTING: defines the BDB reporting state machine that adds report sending functionality.
2. ZCL_REPORTING_DEVICE: defines the device that is sending reports.
3. ZCL_REPORT_DESTINATION_DEVICE: enables report receiving/processing functionality in your

application code.
4. ZCL_REPORT_CONFIGURING_DEVICE: enables configuration of reporting parameters on remote

devices.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA635
http://www.zigbee.org/

RAM Optimizations www.ti.com

4 SWRA635–October 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Optimizing CC2530 Z-Stack 3.0.2 Flash and RAM

The BDB_REPORTING feature adds about 9 kB to the Flash size. This state machine uses functions that
are defined in zcl.c under the ZCL_REPORTING_DEVICE compile flag, so when BDB_REPORTING is
defined then ZCL_REPORTING_DEVICE is automatically defined as well. BDB_REPORTING, however,
does not automatically define the other two compile flags, ZCL_REPORT_DESTINATION_DEVICE and
ZCL_REPORT_CONFIGURING_DEVICE, which must be added separately if their functionality is
required. Although these are small features, less than 1 kB of Flash each, if a device does not require
report sending functionality (the device does not support any clusters that have mandatorily reportable
attributes by the ZCL specification) there is no need to waste the 9 kB of Flash needed for the BDB report
sending functionality in order to support report processing and/or reporting configuration.

3 RAM Optimizations

3.1 UART Driver
If UART is needed by the application, it is add through the HAL_UART compile flag. By default, the UART
driver uses 256-byte TX and RX buffers which takes up a combined 1 kB of RAM. Using UART with
smaller buffer sizes is possible by modifying the compile flag HAL_UART_DMA_RX_MAX=128. Adding
this to the Defined symbols will change the size of both the RX and the TX buffers from 256 to 128 bytes,
and result in a RAM savings of ~500 bytes. But one drawback that must be considered is whether
communication contains large data packets, for example the Monitor and Test (MT) interface for which
frames are allowed to be at most 253 bytes in length. Under these circumstances the buffer size must
remain at the default value.

3.2 Device List Sizes
There are two device lists present on Zigbee routing devices (coordinators and routers) that take up a
statically-allocated amount of RAM at compile time:
• NWK_MAX_DEVICE_LIST

– Defines the number of directly-connected child devices supported
– Each entry in this table is 28 bytes of RAM
– Default size is 20

• MAX_NEIGHBOR_ENTRIES

– Defines the number of "neighbor" devices, which is used in part of the Zigbee mesh-routing
procedure. More neighbors <==> better mesh networking.

– Each entry in this table is 23 bytes of RAM
– Default value is 16

To redefine the size of one or both of these lists, the default values can be changed in
NWK/nwk_globals.h or added to Defined symbols (for example, NWK_MAX_DEVICE_LIST=15).

Figure 4. Default Device List Sizes

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA635

www.ti.com RAM Optimizations

5SWRA635–October 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Optimizing CC2530 Z-Stack 3.0.2 Flash and RAM

3.3 Heap Size
The heap size can be tuned by changing the value of INT_HEAP_LEN, which by default is 3072 bytes of
RAM for routing devices in ZMain/OnBoard.h. Change the value here or add it to Defined symbols (for
example, INT_HEAP_LEN=2688).

3.4 Stack Size
The stack size can be tuned by changing the value of the XDATA stack, which is defined in the IAR
project options. Open Project Options and navigate to General Options > Stack/Heap > Stack Sizes >
XDATA.

Figure 5. Altering Stack Size

By default this value is 0x400 or 1024 bytes of RAM, but 0x300 is found to be suitable for most basic
Z-Stack applications.

4 Optimized Code Size
As an example of saving code space, the following changes were made to the SampleSwitch Router
project:
• Removed the UI
• Removed ADC driver
• Removed ZCL_GROUPS cluster
• Optimized number of Virtual Registers
• Decreased heap to 2688 bytes
• Decreased NWK_MAX_DEVICE_LIST to 15 devices
• Decreased MAX_NEIGHBOR_ENTRIES to 10 devices

The numbers below reflect the new project build size:
225 182 bytes of CODE memory

40 bytes of DATA memory (+ 59 absolute)
6 435 bytes of XDATA memory

192 bytes of IDATA memory
8 bits of BIT memory

660 bytes of CONST memory

In total, over 14 kB of Flash and around 1 kB of RAM was saved when compared to its out-of-box
counterpart. This leaves about 37 kB of Flash and 1,750 bytes of RAM available for application expansion.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA635

CC2530 Zigbee Coordinator Configuration Limitations www.ti.com

6 SWRA635–October 2018
Submit Documentation Feedback

Copyright © 2018, Texas Instruments Incorporated

Optimizing CC2530 Z-Stack 3.0.2 Flash and RAM

5 CC2530 Zigbee Coordinator Configuration Limitations
By implementing the same optimizations as before, the SampleSwitch Coordinator configuration uses
6762 bytes of XDATA memory on the CC2530 device, which leaves 1430 available bytes of RAM. This
extra increase in memory allocation as compared to the Router device counterpart is primarily due to
ZDSECMGR_TC_DEVICE_MAX (default of 40 from ZDO/ZDSecMgr.h), which allocates 8 non-volatile
(NV) bytes per APS key. As a Zigbee 3.0 Trust Center (TC), the coordinator must store these keys to
manage the network security and as such ZDSECMGR_TC_DEVICE_MAX determines the number of
devices allowed to join the network.

Furthermore, if a coordinator is desired to act as a Many-to-One (MTO) data concentrator that records
network route discovery (by setting CONCENTRATOR_ENABLE and
CONCENTRATOR_ROUTE_CACHE to true in NWK/ZGlobals.h) then XDATA will be further populated
by MAX_RTG_SRC_ENTRIES from NWK/nwk_globals.h, which is a default value of 12 and requires 6
bytes of RAM per entry. It must also be considered that the heap would have to be increased to
accommodate a relay list pointer that is stored as the last element of each source route table entry.
Transmitting this information through the MT interface as a Zigbee Network Processor (ZNP) would
require additional RAM for the UART buffer.

Given these restrictions, along with the network topology and design criteria for an end application, it is
understandable that the 8 kB of Flash residing on a CC2530 device will not be capable of supporting
networks containing a large number of nodes. Under these circumstances, it is advised that the CC2652R
or CC1352P SimpleLink™ Wireless MCUs be considered as an alternative. In addition to sub-µA sleep
current and up to 80 kB of RAM retention, these devices support the SimpleLink CC26x2/CC13x2 SDKs
that combines the TI-RTOS framework and Z-Stack 3.x for a reliable Zigbee solution, which is tested and
maintained on a quarterly cadence. Visit the Zigbee Overview page for more device and solution offerings.

6 Trademarks
Texas Instruments, SimpleLink are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRA635
http://www.ti.com/product/CC2652R
http://www.ti.com/product/CC1352P
http://www.ti.com/wireless-connectivity/simplelink-solutions/overview/software.html
http://www.ti.com/wireless-connectivity/simplelink-solutions/zigbee/overview.html

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/legal/termsofsale.html
http://www.ti.com

	Optimizing Flash and RAM Usage of Z-Stack 3.0.2 for the CC2530 Device
	1 Initial Out-of-Box Code Size
	2 Flash Optimizations
	2.1 Removing the Example User Interface
	2.1.1 Exclude UI Files
	2.1.2 Remove API Calls to UI Functions
	2.1.3 Modify the Compile Flags to Exclude LCD-Related Drivers

	2.2 Removing/Modifying Driver Files
	2.3 Changing the Number of Virtual Registers Available
	2.4 Supported ZCL Cluster Considerations
	2.5 BDB_Reporting Considerations

	3 RAM Optimizations
	3.1 UART Driver
	3.2 Device List Sizes
	3.3 Heap Size
	3.4 Stack Size

	4 Optimized Code Size
	5 CC2530 Zigbee Coordinator Configuration Limitations

	6 Trademarks
	Important Notice

